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ELASTIC WAVES IN A MATERIAL WITH CHEMOMECHANICAL REACTIONS* 

B.N. KLOCHKOV 

A theoretical analysis is given of mechanical wave processes in muscle 
tissue over a broad frequency range. As in /l/, the elastic waves are 
studied using a continual chemomechanical model /2-S/ extended to the 
case of an arbitrary discrete and continuous relaxation time spectrum /6/. 
Analytic expressions containing elastic and viscous parameters, as well 
as parameters corresponding to the muscle anisotropy and activity, are 
obtained for the elastic wave velocity and damping in thin muscle tissue 
specimens. The muscle specimen stability conditions are found. A 
comparison is made with known experimental results and it is shown that 
the model constructed describes the elastic-wave characteristics 
satisfactorily in a muscle in different states. 

Investigation of elastic-waves in a medium is an important (often 
unique) method of determining its structure and rheological and functional 
properties. This especially concerns media of a biological nature, 
particularly muscle and internal organ tissues. As a rule, biological 
media are anisotropic and heterogeneous, where the muscle tissue still 
manifest active properties, and develops a stress as a result of chemical 
reactions. During miscle contraction (single, say) the elastic-wave 
velocity and damping depend on the muscle stress and degree of contraction. 
Depending on the wavelength, the excitation method, and the propagation 

*Prikl.Matem.Mekhan.,50,3,451-460,1986 
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direction, mechanical waves of different types are possible in which the 
structural and rheological properties of the medium appear differently. 

If the wavelength is small compared with the characteristic linear 
dimensions of the tissue specimen, longitudinal waves are possible that 
are due to the compressibility and propagate at different angles to the 
anisotropy axes, as are also transverse (shear) waves. As they apply to 
muscle tissuei these kinds of waves were examined in /l, 2, 7/. The 
longitudinal wave damping, unlike their velocity, depends strongly on the 
state of the muscle and the propgation direction (along or across the 
fibres) /l, 8/. Longitudinal /6/ and flexural displacement waves, as 
well as torsional waves are possible in specimens that are thin compared 
with the wavelength. Longitudinal and flexural waves are also possible 
in specimens in the form of thin plates whose thickness is small compared 
with the wavelength while the dimensions in the two other directions are 
large. Surface (Rayleigh) waves and some others are also of interest. 

1. Muscle tissue is regarded as a biphasal and multicomponent continuous medium, where 
the active phase 1 is visoelastic and chemical reactions occur there. The passive phase 2 
is elastic and sources exist there for substances needed for muscle activiation and contraction. 
Exchange of the substance can occur between the phases. 

The coordinate system can be curvilinear. The stress tensor components & of the medium 
consist of stress tensor components olij of the active phase and crzii of the passive phase 
taking their volume contents 'pi and 'pz into account: 

uZJ= C&Or" + (Pza2" (cpl -+- 'Fz= l) (1.1) 

Let the deformations be small and the medium incompressible, In this case the rheological 
equations describing the muscle tissue have the form 

l1.2) 

The quantities &kl are strain tensor components of the medium as a whole, qkra is the 
reversible part of the strain tensor component, and Ak,a is the irreversible part, Naf' are 

the active stress tensor components governed by the chemical reactions, and pa'* pl,z are 
Lagrange multipliers. It is assumed that Aiia = 0 and qiia = 0, and therefore, ejl = 0. The 

components A’,lmn and Bijkr are elasticity coefficients while Lzki is the viscosity and gij 
are metxic tensor components. 

These equations are obtained by using the methods of the mechanics of a continuous medium 
and non-equilibrium thermodynamics as in /l-5/. The balance relations for the phase 
concentrations of the phase substances and the total energy of each phase, the theorem of 
vital phase forces, the heat influx equations of the phases, and Gibbs' identity for each 
phase are used here (where the internal energy of the active phase 1 depends on q&,a==f, 
z,...). On the basis of these, an entropy balance equation is obtained for the medium, from 
which relations between the thermodynamic fluxes and forces result, in particular, the equation 
in (1.2) connecting o,,ijwith d.Akla/dt and with N,ij. Unlike /3-5/, where only slow stress and 
strain change processes were taken into account, the complete relaxation time spectrum is 
contained in the model (l.l)-(1.3), as is manifiest as the freqeuncy of action on the medium 
increases. In principle, by assuming the relaxation time spectrum to be continuous (see 
below), an integral can be written in place of the sum in (1.2). 

It is assumed in the model (l.l)-(1.3) that a small material volume of the active phase 
1 contains a discrete set (generally infinite) of subelements connected in parallel, with 
numbers a(a = 1, 2, . ..). each of which is characterized by the coefficients of viscosity 

h'j" the coefficients of elasticity A$” as well as the active stress Naij. 
dizeisional analogueofthemodelisshowninFig.1. 

The one- 
Phase 2 in it consists of the elastic 

element B, and phase 1 from subelements with elasticities A,, A,,...,Av..,., viscosities 
L,, Lz,...,&, . . . . and activities N,, NP,...% Nvt . . . The parameters oftheelement B and the 
subelements with A,, La, Na (a = 1, 2, . . ., Y, . . .) change as a result of chemical reactions 
(during muscle activation, say), The simplest model of such a change in the presence of just 
three elements B,A,,L, is proposed in /9/. A scheme analogous to Fig.1 was proposed in /lo/ 
for instance for a passiye model (N= = 0, a = 1, 2, . . ., v, . . .). 

The quantities Laijk’, Aaiimn, Bijkr are tensor coefficients determined by the metric tensor. 
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g" and the tensor b'j characterizing the anisotropy. The hypothesis of transversal isotropy 
holds for a muscle, where the extracted direction agrees with the muscle fibre direction. 
In the case /ll/ 

@jkl = P (gikgj’ + gilgjk) + y1 (g’kbj’ + gjkbil + gilbjk + gj[bik) .+ 

,,&,kt + &‘jbk’ 
(1.4) 

Here p is the usual Lam5 isotropic coefficient and Y~,~,~ define the transversal isotropy. 

Analogous expressions hold for Aaijk' ( pp ~&,~,~will replace p and *t.t.S ) and for Laijkl ( pLa, 

*L2,3 replace p, v,,,,).The coefficients BijkI , Aaijk’, Laijk’ depend, as does Na'j, on the state 

of the muscle tissue which can change because of the chemical processes. 
In general, it can be required that the incompressibility condition is satisfied for 

each of the phases. In this case additional components and coefficients appear in the 
expressions for Aaijkr and .&ijkl. If the medium is compressible, then (l.l)-(1.3) hold for its 
description except that 

will replace the first relations of (1.2) and (1.31, where the expressions for &Xl Aaijkl , , 
L bkl will contain additional components as compared with (1.4) /l/, and eii#O,qiiu#O, Aiia+O. a 

Fig.1 

For simplicity, we can set N='j = 0 for a> 2,N,'j#O and also LI"' = I). We will 

take the active stress tensor components Nl'j in the form 
N1ij =s,G + mlij ,(1.5) 

where rap corresponds to the presence of the active stresses developed because of the 

biochemical reactions, and ml'j reflects the contribution totheactive stresses as a result 
of elastic deformation of the microrelations formed during the biochemical reactions (see 
Sect.5). 

An expression for nlij is obtained from the condition that the number of muscle fibres 
in a specimen section is constant during deformation (freezing of the anisotropy) /2, 3/. 

For finite deformations we have 

where zi are Eulerian and Et are Lagrangian coordinates, and the axis p coincides with the 
direction of the muscle fibre, & are the displacement vector components of the medium, 8ki 
is the Kronecker delta, ~=y~(l,) is the activity parameter dependent on the degree of overlap 
of the active centres of the centres of the structural elements of the muscle tissue fibre IA 
on which the following microrelations are formed: 

1, = (~+&&!&+- (~+%.3v&J 'I. W3) 

The components cll, G,,, .s,,, q,,l in (1.6)-(1.8) are taken in the E' coordinate system and ",ij, 
hi> & in the 2 system. 

If the deformations are small and the C? axis coincides with the fibre direction, then 



where r<j" defines the elastic properties of the microrelations. A formula of the type (l..,li 
holds for r:jh" where I',,r and r,,,,,,I replace p and T~,~,~. 

we rewrite (1.2) eliminating ACLhl 

since XaQb depends on Ab2a and ekl, it is still necessary to append the relationship 

A~n-1E,-A;j4nno~; jt*l2) 

Fox mechanical actions proceeding sufficiently rapidly the viscous properties of the 
muscle tissue do not succeea in appearing completely. For instance, let the displacement in 
the tissue occur at a frequency f. The characteristic times of component variation olaij and 

Qt equal, respectively, the quantities ~~~ (i, i) and z,e (k, 2) that are combinations of L,ijBz, 

-4 <jni &<j a > (see (1.5), (1.9)-(1.12)). If f> k%,'j (i,j), then (1.11) goes over into 

L~~~~~~~~~~=~b~~~~~ + AT;;, 

if f> i/qGa (i, j), Ikae (k, 9, then (1.l.l) is simplified still more 
&&A~#~ 

a %E (1.13) 

Therefore, for a sufficiently high action frequency f the contribution of the active 
stresses N2i can be neglected, and the distinction between the active and passive muscles 

will be contained in just the coefficients Ak’“‘,B’j”,. &Z 
ijRi 

. 
In the case when f< lil,"(i,j) we have 

0:; = L;*“‘eet + Nag 

For f < l/Tao (i, j), lIza (k, 1) we obtain 

a$=hC$ 

Let the following conditions hold: 

(1.14) 

(1.15) 

Then the subelements of the active phase L with the numbers 1,2,3,...,v- 1 can be 
described by fl.l3),i.e., these subelements become purely elastic in practice. The subelements 
with numbers Y+~,Y+&... can be describedby (l.l4f,which reduce to trivial values when 
there are no active stresses. Therefore, under conditions (1.15) the equation connecting 

o;&zz s a$ with eij has the form 
a-1 

(1.16) 

Sf the above-mentioned conditions hold, namely Na'i = 0 for a> 2, Lp” = 0 and 

V--t 
c&Al 

AP = 2 Agbk', 
a=a 

then we obtain a simpler equation instead of (1.16) 

,r_$'"'&&;&+ e;;= ,4;F'ekr + gbkl (A&A&+y + d~m8:)~,~ + 

j$‘$ + p&b + Gbki A& (#:j + p-&g’3 
(1.17) 

Thust at sufficiently high frequencies, the elastic properties of phase 1 are determined 
by the total elasticity coefficients of the subelements 1,2, . . . ..Y - 1, and the viscous 
properties by the viscosity coefficients of the "extracted" subel.ement y. At low frequencies 
(v = 2) when 
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(1.171 becomes 

In principle, equations of the type (1.17) can be used approximately, instead of (1.2), 
at any frequencies in a fairly narrow range. However, the-values of the coefficients therein 

will depend on the mean frequency f,,of the range selected. Here g," 'Y and A,,,*1 decrease as 
. . 

fo increases while A$ increase. 
Taking account of the first relationship in (1.21, after eliminating As? from Nl'j. Eqs. 

(i.l), (1.171, (1.3) yield a connection between the stress and strain tensor components u'j 
and %j that characterise the muscle tissue as a whole. 

Let us present the integral form of the connection between the stress and strain tensor 
components & and aif. We will first write the connection between the components .. s;CC and 
%j for a separate subelement a by eliminating A;“. By virtue of (1.51, (1.9), (l.lO), 
the expression for N;j can be represented in the form 

ij N,'j = NoI + NF'e,, + N,, ijklA1 kl 

For a subelement with number a= 1 we then have from (1.21, taking (1.12) into account 

Applying the Laplace transform to (1.18) 

ea m 

q: fs) = s a$ (1) b-“tdf, F” (8) = s p,” (t) e-ddt 
0 ff 

we obtain 

Setting uiz (f= O)=O for simplicity , and applying the inverse Laplace transform to (1.19) 
we obtain 

*:~(f)=S,~(f--7)~(7)d~ .(i.20) 
0 

qcim 

&,(t)L- ’ 2ni s 
8bzb (I) da 4.21) 

q4.a 

Summing (1.20) over all a, we find a$ and by using (l.l)-(1.3) we write the desired 
connection between & and sit 

(1.22) 

In the case of a continuous distribution of the relaxation time spectrum, the tensor 
components of the relaxation function &ml(t) are not expressed in terms of the sum of the 
functions (1.21) in the form (1.23). In this sense, (1.22) can be considered to be more 
general than (l.l)-(1.3). 

Within the framework of a model Jf the type (l.l)-(1.31, (1.6) taking the compressibility 
into account, expressions are obtained in /I, 2, 7/ for the velocity and damping of longitudinal 
waves propagating along the across the muscle fibres; here the contribution of the activity 
NZ is determined only by the term of the type (1.10). For transverse waves /l/ propagating 

along the fibres, a term of the type (1.9) in addition to (1.10) affects the velocity and 
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damping while only (1.10) is effective for perpendicular propagation. Expressions are presented 
in /6/ for the longitudinal wave velocity and damping in thin muscle specimens obtained within 
the framework of the model (l.l)-(1.41, (1.16) for N~$;O,L~~'BO(~=l,2,...). 

2, We now consider a cylindrical specimen of longitudinal section of muscle tissue, 
described by the equations considered above. The miscle fibres are parallel to the specimen 
axis. For simplicity we assume the specimen lateral surface to be stress-free. Let the axis 
x3 = z of the rectangular Cartesian coordinate system xi be directed along the specimen axis. 
We assume the specimen to be fairly thin. Only one stress tensor component ua3 is not zero 
in such a specimen. 

Let the specimen be subjected to longitudinal displacements (along the specimen axis). 
The transverse displacements are also non-zero. It can be shown that en = sZa, Ana = A,p, 
up = qe2a, olu = oIz2, a211 = aSz2. The incompressibility conditions have the form 2% + %i= 0, 
2A,,a + ASaa = 0, 2qna + ~8~ = 0. Then we write the governing Eqs.(1.2), (1.171, (L.3) as 
follows 

Taking account of (2.1) and (2.3) the boundary conditions on the specimen lateral surface 
results in the relationship 

%@I i- &%a -t- &rlssv + AI@) ?L 'PZ(PZ + Bless)= 0 

We have the following expression for aa 

ea8 = cp1 (PI + Aaess f Aysqssv + Adsa’) + Cpz (Pz + B8%i) 

In the case of small deformations the relationships 

&= = rzIM + mls3 = y + y’tb2 i- yeit3 + r&d 

Nlll = rnlll = l?lAs$ 

(2.4) 

12.5) 

G-6) 

ty E yl, rs = 2r, + 417,~ + r+?. + rv3, rl = - rL + b) 
(2.7) 

follow from (1.51, (1.91, (1.10) for the active stresses. 

Eliminating ASSV, A,,', 'p1pr + rpBps from (2.4)-(2.7) and substituting into e3' - 'plurs3 f m&235 
using (2.2) and (2.31, we obtain an equation connecting p and ~5 

The coefficients in (2.8) are constant in time. The quantityE,is Young's modulus of 
the elastic passive phase 2, El, E,, & are Young’s moduli of the elastic elements in the 
active phase 1, Er is Young’s modulus of the microrelations, Lv is the coefficient of viscosity 
of phase 1, and y0 has themeaning of the active muscle stress. 

3. As an illustration of the wave process we investigate longitudinal waves in a specimen 
of muscle tissue whose transverse linear dimension is small compared with the wavelength. The 
wave processes occur in a certain state of stress and strain (background) that occurs after 
activation of the muscle. We present the relationships just for the waves. 

Using the equations of motion and the relationship between the strain e,, and the 
displacement w3 = wS 
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a*L0s as 
Q at’ -=T’ esS = -f$ , ~v~,,=i.? 

we obtain an equation to investigate the waves in the form 

using (2.8). 
Formally it is no different from the well-known equation in the theory of linear visco- 

elasticity /12/. When investigating the solution, of fundamental interest here is its 
dependence on the active parameters y, y', &, which can change depending on the state of the 
muscle tissue since it is a medium with variable structure. 

If the wave frequency f is large canpared with the characteristic frequencies T:-~ of 
muscle contraction, then the coefficents in (3.1) can be slow functions of time (for instance, 
for a single background contraction), where y’ = 0. Conversely, if fez,-’ it is necessary 
to set Ez: = 0,~ = 2 and y'# 0 in (3.1) for 'a certain background activated state that is 

constant in time, For f -T,+ the model requires refinement. 
Substituting w3 =w,exp[i(ot -&)I into (3.1), where q, is the constant wave amplitude, 

we obtainthedispersion equation 

Considering the frequency o as real (given), we use (3.2) to find the velocities VI,!4 
and damping factors xnp ofthelongitudinal waves propagating to opposite sides (the muscle 
specimen is considered to be infinite in the longitudinal direction) 

~8 = we exp b(wt T k&l exp (&k,z), k = ka -+- ik,,, 

k~=[(n2fma)‘/~fn]‘~r, vl,% =&k, ~,,~=3k,,,=~~ (3.3) 

If the damping is neglected (L+<f) then for vos>Q we obtain from (3.3) an expression 
for the longitudinal wave propagation velocities v~,~ in the form 

It follows from (3.4) that the propagation velocity depends not only on Young's moduli 

E,, E,, Er of the phase passive elements (which can, however, depend on the muscle state) f 
but also on Young's modulus Er of the microrelations occurring because of the biochemical 
reactions after muscle excitation, and also on the activity parameters: Y, characterizing 
the active stress, and y', which depends on the strain in the background state. If it is 
assumed, to be specific, that the additional elastic coefficients originating because of the 

anisotropy ~~,~.a, ZW. ~&,a~ rVf.l,l) are small compared with the ordinary isotropic elastic -6 
coefficients p, pAa,p~*,rPr respectively, then E,, E,, E,, E,, E,, L, are positive. The quantity 

y > 0, while y' can be positive, zero, or negative. 

mowing ml.n and also the viscoelastic and active parameters that can be determined in 
static and dynamic experiments on a muscle tissue specimen the velocity and damping of this 
wave can be calculated. Conversely, knowing the wave velocity and damping in different muscle 
states, certain viscoelastic and active tissue parameters , or at least the connection between 
them, can be determined. 

It follows from (3.3) that m<O for all reasonable values of the parameters, i.e., the 
longitudinal waves will be attenuated as they propagate. 

4. We will consider the question of the stability in this system. Using the notation 
0 = -is, we obtain from (3.2) that 

L,sis + sr= + L,,aup=k%z + v&P = 0 (4.1) 

For %>O the quantity 0 = s&j + io, yields stability in time; the real part Of Sr is 
negative here. For real k the negativity condition ofthereal parts of the roots of (4.1) 
reduce to the following, according to the Routh-Hurwits criterion: 

voa > 0 (4.2) 

It follows from (4.2) that the system is stable if 



A>0 (‘i.?i) 
Since there are no branch points of the function k,,, (0) from (3.2) in the lower II) half- 

plane ((o,)~< (I), then if (4.3) is not satisfiedthe instability will be convective /13/. 
Let the specimen of muscle tissue have the finite length L. Let us examine the special 

case of rigid clamping of the specimen when the boundary conditions reduce to the following: 

wg(z = 0) = w5(z = L) = 0 (4.4) 

Using the particular solution of the wave equation iI1 the form 

[lb(~,t)=eiOt(Clr--iBL + C2ei'iz) 

where k = k(o) is found from the dispersion Eq.(3.2), and the boundary conditions (4.4), we 
obtain an equation for the complex frequency 

For o = --is, Eq.(4.5) is analogous to (4.1) and its analysis yields a stability condition 
that agrees with (4.2) for n2>0. For n = 0 the stability condition is always satisfied, 
as follows from (4.5). 

Therefore, for a muscle tissue specimen of finite length L violation of condition (4.3) 
leads to absolute instability, but only to convective instability for a specimen of infinite 
length. 

Instability, that is possible, in principle, at low frequencies f<q-l fox y’<O, is 
determined from one of the following conditions as follows from (4.3) : 

We note that if N'j+O, L'jci cz a +O (a= 1,2,...), where the expressions for Nz have a structure 

of the type (l-9), (1.101, then satisfaction of the system instability conditions is facilitated 
(in principle, there may be instability even for v,'>O because of the fairly large quantity 

Ya). Wave amplification is possible. 
When there is a loss of stability (conditions (4.3) are not satisfied), the muscle tissue 

specimen possibly becomes a generator of selfexcited oscillations whose parameters can be 
found when taking account of the non-linear properties of the muscle. The selfexcited 
oscillations observed experimentally in muscle specimens are described in /14/, for example. 

5. We will compare expressions obtained for the velocities and damping (3.3) and (3.4) 
with the results of experiments /lo, 15-l?/. 

Initially, we will recall briefly the characteristic features of the muscle tissue 
microstructure /la/. The muscle tissue fibres at the microlevel are formed parallel to the 
arranged myofibrillars, which are, in turn, filled with protein microfilaments of two kinds, 
active (a) (thin) and myosin (m) (thick, Fig.2). Muscle contraction is accompanied by insertion 
of some filaments between others with closing and opening of the microconnections (c) (bridges) 
between the filaments taking part. The muscle can be in different states: passive (bridges 

open), a single contraction (in response to a single stimulating signal), tetanic contraction 
(periodic excitation at high frequency) , and rigidity or contracture (bridges closed and fixed). 
The mechanical characteristics (elasticity and viscosity, say) of the filaments and bridges 
here generally depend on the state of the muscle tissue. 

Let the stability conditions (4.3) be satisfied. In this case the expression for the 
longitudinal wave propagation velocity in the muscle tissue specimen (3.4) will yield a 
monotonic increase in the velocity as the active parameter v or v', or E, increases. 

We examine the simplest special case when either the wave frequency is f>~*-' (for 
skeletal muscles TC -iOV set) , or muscle contraction occurs in the background state within 
the limits of the "plateau" of the bell-shaped dependence v=y(EJ. In both these cases y'=O. 
Weuse for the estimates /5, 10, 14/ 

For a passive muscle (v= fi= fil=E,=O) we have vl= 52.9 m/set and q=188 m-1 from (3.3). 
For a muscle in the rigid state (the muscle is passive but all the bridges are closed), we 
find u1 = 144 m/see, x,= 42 m-1 by setting y= 0, p = 8, & = 0.5% E,= E,. If the muscle is in the 
activated state (tetanus), then we take q+y = 7.5.106 M/m2 $ = 14, & = 0.7, ET= i,5 El; and we have 
q = 175 m/set and x1 c 34 m-1. 

, 
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Fig.2 

It can be shown from a comparison with test data /lo, 15-17/ that these estimates of the 
values of the longitudinal wave velocities and damping in a thin muscle tissue specimen in 
the passive, rigid, and tetanic states are close to those observed. 

If the wave frequency f is comparable with the natural characteristic frequencies of 
muscle contraction TV-', then resonance effects can exist, and parametric phenomena can 
apparently occur. Internal parameters describing the cyclical structural rebuilding of proteins 
and their equations must be introduced to describe oscillatory processes at the muscle tissue 
microlevel. 
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